EE 330 Lecture 2

Basic Concepts

Select a seat that will be used for taking attendance.

How Integrated Electronics will be Approached

Review from last lecture:

How Integrated Electronics will be Approached

After about four weeks, through laboratory experiments and lectures, the concepts should come together

Selected Semiconductor Trends

- Microprocessors
- DRAMS
- FPGA

Update on Leading Semiconductor Companies

2023 Rank	$\begin{aligned} & 2022 \\ & \text { Rank } \\ & \hline \end{aligned}$	Vendor	2023 Revenue	2023 Market Share (\%)	2022 Revenue	2023-2022 Growth (\%)
1	2	Intel	48.664	9.1	58.436	-16.7
2	1	Samsung Electronics	39.905	7.5	63.823	-37.5
3	3	Qualcomm	29.015	5.4	34.780	-16.6
4	6	Broadcom	25.585	4.8	23.868	7.2
5	12	NVIDIA	23.983	4.5	15.331	56.4
6	4	SK Hynix	22.756	4.3	33.505	-32.1
7	7	AMD	22.305	4.2	23.620	-5.6
8	11	STMicroelectronics	17.057	3.2	15.842	7.7
9	9	Apple	17.050	3.2	18.099	-5.8
10	8	Texas Instruments	16.537	3.1	18.844	-12.2
		Others (outside top 10)	268.853	50.7	294.729	-8.8
		Total Market	533.025	100.0	599.562	-11.1

> 3,4,5,7,9 fabless

Spec Breakout: Key Comparison CPUs

		AMD Ryzen 9 3900X		Intel Core i9-10900K	
List Price		\$499		\$488	
Cores		12		10	
Threads Supported		24		20	
Base Clock		3.8 GHz		3.7 GHz	
Boost Clock		4.6 GHz		5.3 GHz	
Integrated Graphics		None		Intel UHD 630	
TDP Rating		105 watts		125 watts	
Socket		AM4		LGA1200	
AMD Ryzen 9 3900X (64-bit, SIMD, caches, I/O die)	9,890,000,000 ${ }^{[1][2]}$	2019	AMD	7 \& 12 nm (TSMC)	$273 \mathrm{~mm}^{2}$

Intel Core i9 10900K 14nm CMOS

Recent Intel Processor

Processor

8 cores, Intel ${ }^{\circledR}$ Core i9 Processor, 5.0 GHz
Power Dissipation: 125 watts

Today!

Processor Intel Core i9 10900K
10 -core Processor in 14 nm CMOS, 3.7 GHz
Power Dissipation: 125 watts

Today!

Processor AMD Ryzen 5950X

16-core Processor in 7nm CMOS, 3.4-4.9 GHz
Power Dissipation: 105 watts

Wafer of processors

Yesterday!

Processors

Imy Processor *	MOS transistor count $\widehat{\text { v }}$	Date of introduction	Designer *	$\begin{aligned} & \text { MOS } \\ & \text { process } \\ & (\mathrm{nm}) \end{aligned}$	Area (mm^{2}) $\hat{\text { 人 }}$
MP944 (20-bit, 6-chip, 28 chips total)	74,442 (5,360 excl. ROM \& RAM) ${ }^{[24][25]}$	$1970{ }^{[22][a]}$	Garrett AiResearch	?	$?$
Intel 4004 (4-bit, 16-pin)	$2,250$	1971	Intel	10,000 nm	mm^{2}
TMX 1795 (?-bit, 24-pin)	$3,078{ }^{[26]}$	1971	Texas Instruments	?	$30 \mathrm{~mm}^{2}$
Intel 8008 (8-bit, 18-pin)	3,500	1972	Intel	10,000 nm	$14 \mathrm{~mm}^{2}$
NEC μ COM-4 (4-bit, 42-pin)	2,500 ${ }^{[27][28]}$	1973	NEC	$7,500 \mathrm{~nm}^{[29]}$?
Toshiba TLCS-12 (12-bit)	11,000+[30]	1973	Toshiba	6,000 nm	$32 \mathrm{~mm}{ }^{2}$
Intel 4040 (4-bit, 16-pin)	3,000	1974	Intel	$10,000 \mathrm{~nm}$	$12 \mathrm{~mm}^{2}$
Motorola 6800 (8-bit, 40-pin)	4,100	1974	Motorola	6,000 nm	$16 \mathrm{~mm}^{2}$
Intel 8080 (8-bit, 40-pin)	6,000	1974	Intel	6,000 nm	$20 \mathrm{~mm}^{2}$
TMS 1000 (4-bit, 28-pin)	8,000	$1974{ }^{[31]}$	Texas Instruments	8,000 nm	$11 \mathrm{~mm}^{2}$
MOS Technology 6502 (8-bit, 40-pin)	$4,528^{[b][32]}$	1975	MOS Technology	$8,000 \mathrm{~nm}$	$21 \mathrm{~mm}^{2}$
Intersil IM6100 (12-bit, 40-pin; clone of PDP-8)	4,000	1975	Intersil	?	?
CDP 1801 (8-bit, 2-chip, 40-pin)	5,000	1975	RCA	?	?
RCA 1802 (8-bit, 40-pin)	5,000	1976	RCA	$5,000 \mathrm{~nm}$	$27 \mathrm{~mm}^{2}$
Zilog Z80 (8-bit, 4-bit ALU, 40-pin)	8,500 ${ }^{\text {[c] }}$	1976	Zilog	4,000 nm	$18 \mathrm{~mm}^{2}$
Intel 8085 (8-bit, 40-pin)	6,500	1976	Intel	$3,000 \mathrm{~nm}$	$20 \mathrm{~mm}^{2}$
TMS9900 (16-bit)	8,000	1976	Texas Instruments	?	?

Today!

Processors

Tegra Xavier SoC (64/32-bit)	$9,000,000,000{ }^{[127]}$	2018	Nvidia	12 nm	$350 \mathrm{~mm}^{2}$
AMD Ryzen 7 3700X (64-bit, SIMD, caches, I/O die)	$5,990,000,000{ }^{[128][d]}$	2019	AMD	7 \& 12 nm (TSMC)	$199(74+125) \mathrm{mm}^{2}$
HiSilicon Kirin 990 4G	$8,000,000,000{ }^{[129]}$	2019	Huawei	7 nm	$90.00 \mathrm{~mm}^{2}$
Apple A13 (hexa-core 64-bit ARM64 "mobile SoC", SIMD, caches)	$8,500,000,000{ }^{[130][131]}$	2019	Apple	7 nm	$98.48 \mathrm{~mm}^{2}$
AMD Ryzen 9 3900X (64-bit, SIMD, caches, I/O die)	$9,890,000,000{ }^{[1][2]}$	2019	AMD	7 \& 12 nm (TSMC)	273 mm ${ }^{2}$
HiSilicon Kirin 990 5G	$10,300,000,000{ }^{[132]}$	2019	Huawei	7 nm	$113.31 \mathrm{~mm}^{2}$
AWS Graviton2 (64-bit, 64-core ARM-based, SIMD, caches) ${ }^{[133][134]}$	30,000,000,000	2019	Amazon	7 nm	?
AMD Epyc Rome (64-bit, SIMD, caches)	$39,540,000,000^{[1][2]}$	2019	AMD	7 \& 12 nm (TSMC)	$1008 \mathrm{~mm}^{2}$
TI Jacinto TDA4VM (ARM A72, DSP, SRAM)	3,500,000,000 ${ }^{[135]}$	2020	Texas Instruments	16 nm	
Apple A14 Bionic (hexa-core 64-bit ARM64 "mobile SoC", SIMD, caches)	11,800,000,000 ${ }^{[136]}$	2020	Apple	5 nm	$88 \mathrm{~mm}^{2}$
Apple M1 (octa-core 64-bit ARM64 SoC, SIMD, caches)	$16,000,000,000{ }^{[137]}$	2020	Apple	5 nm	$19 \mathrm{~mm}^{2}$
HiSilicon Kirin 9000	15,300,000,000 ${ }^{[138][139]}$	2020	Huawei	5 nm	$114 \mathrm{~mm}^{2}$

FPGA Trends

Today!

High-end FPGAs are quite expensive

FPGA Trends

Today!

FPGA *	MOS transistor count ${ }^{-}$	Date of introduction ${ }^{-}$	Designer ${ }^{-}$	Manufacturer ${ }^{\text {人 }}$	MOS process $\stackrel{\text { - }}{ }$	Area *	Ref
Virtex	70,000,000	1997	Xilinx				
Virtex-E	200,000,000	1998	Xilinx				
Virtex-II	350,000,000	2000	Xilinx		130 nm		
Virtex-II PRO	430,000,000	2002	Xilinx				
Virtex-4	1,000,000,000	2004	Xilinx		90 nm		
Virtex-5	1,100,000,000	2006	Xilinx	TSMC	65 nm		[195]
Stratix IV	2,500,000,000	2008	Altera	TSMC	40 nm		[196]
Stratix V	3,800,000,000	2011	Altera	TSMC	28 nm		[197]
Arria 10	5,300,000,000	2014	Altera	TSMC	20 nm		[198]
Virtex-7 2000T	6,800,000,000	2011	Xilinx	TSMC	28 nm		[199]
Stratix 10 SX 2800	17,000,000,000	TBD	Intel	Intel	14 nm	$560 \mathrm{~mm}^{2}$	[200][201]
Virtex-Ultrascale VU440	20,000,000,000	Q1 2015	Xilinx	TSMC	20 nm		[202][203]
Virtex-Ultrascale+ VU19P	35,000,000,000	2020	Xilinx	TSMC	16 nm	$900 \mathrm{~mm}^{2}$ [e]	[204][205][206]
Versal VC1902	37,000,000,000	2H 2019	Xilinx	TSMC	7 nm		[207][208][209]
Stratix 10 GX 10M	43,300,000,000	Q4 2019	Intel	Intel	14 nm	$1400 \mathrm{~mm}^{2}$ [e]	[210][211]
Versal VP1802	$92,000,000,000$	2021 ? ${ }^{[f]}$	Xilinx	TSMC	7 nm	?	[212][213]

Memory Trends

As	16 Mb	SRAM (CMOS)	100,663,296	1992	Fujitsu, NEC	400 nm	$?$	[234]
	256 Mb	DRAM (CMOS)	268,435,456	1993	Hitachi, NEC	250 nm		
	1 Gb				NEC	250 nm	$?$	[240][241]
					Hitachi	160 nm	?	
		SDRAM	1,073,741,824	1996	Mitsubishi	150 nm	?	[234]
		SDRAM (SOI)	1,073,741,824	1997	Hyundai	?	?	[242]
		DRAM (4-bit)	1,073,741,824	1997	NEC	150 nm	?	[234]
	4 Gb	DRAM	4,294,967,296	1998	Hyundai	?	?	[242]
	8 Gb	SDRAM (DDR3)	8,589,934,592	April 2008	Samsung	50 nm	?	[243]
	16 Gb	SDRAM (DDR3)	17,179,869,184	2008				
	32 Gb	SDRAM (HBM2)	34,359,738,368	2016	Samsung	20 nm	$?$	[244]
	64 Gb	SDRAM (HBM2)	68,719.476.736	2017				
	128 Gb	SDRAM (DDR4)	137,438,953,472	2018	Samsung	10 nm	?	[245]

Memory Trends

$?$	1 Gb	2-bit NAND	536,870,912	2001	Samsung	$?$	$?$	[234]
					Toshiba, SanDisk	160 nm	?	[251]
	2 Gb	NAND	2,147,483,648	2002	Samsung, Toshiba	$?$?	[252][253]
	8 Gb	NAND	8,589,934,592	2004	Samsung	60 nm	?	[252]
	16 Gb	NAND	17,179,869,184	2005	Samsung	50 nm	?	[254]
	32 Gb	NAND	34,359,738,368	2006	Samsung	40 nm		
THGAM	128 Gb	Stacked NAND	128,000,000,000	April 2007	Toshiba	56 nm	252 mm ${ }^{2}$	[255]
THGBM	256 Gb	Stacked NAND	256,000,000,000	2008	Toshiba	43 nm	353 mm²	[256]
THGBM2	1 Tb	Stacked 4-bit NAND	256,000,000,000	2010	Toshiba	32 nm	374 mm²	[257]
KLMCG8GE4A	512 Gb	Stacked 2-bit NAND	256,000,000,000	2011	Samsung	?	192 mm²	[258]
KLUFG8R1EM	4 Tb	Stacked 3-bit VNAND	1,365,333,333,504	2017	Samsung	?	$150 \mathrm{~mm}^{2}$	[259]
eUFS (1 TB)	8 Tb	Stacked 4-bit VNAND	$2,048,000,000,000$	2019	Samsung	?	$150 \mathrm{~mm}^{2}$	[4][260]

FPGA Trends

FPGA *	MOS transistor count ${ }^{\text {- }}$	Date of introduction $\stackrel{\text { 人 }}{ }$	Designer *	Manufacturer *	MOS process $\hat{\text { - }}$	Area $\stackrel{\rightharpoonup}{*}$	Ref
Virtex	70,000,000	1997	Xilinx				
Virtex-E	200,000,000	1998	Xilinx				
Virtex-II	350,000,000	2000	Xilinx		130 nm		
Virtex-II PRO	430,000,000	2002	Xilinx				
Virtex-4	1,000,000,000	2004	Xilinx		90 nm		
Virtex-5	1,100,000,000	2006	Xilinx	TSMC	65 nm		[195]
Stratix IV	2,500,000,000	2008	Altera	TSMC	40 nm		[196]
Stratix V	3,800,000,000	2011	Altera	TSMC	28 nm		[197]
Arria 10	5,300,000,000	2014	Altera	TSMC	20 nm		[198]
Virtex-7 2000T	6,800,000,000	2011	Xilinx	TSMC	28 nm		[199]
Stratix 10 SX 2800	17,000,000,000	TBD	Intel	Intel	14 nm	$560 \mathrm{~mm}^{2}$	[200][201]
Virtex-Ultrascale VU440	20,000,000,000	Q1 2015	Xilinx	TSMC	20 nm		[202][203]
Virtex-Ultrascale+ VU19P	35,000,000,000	2020	Xilinx	TSMC	16 nm	$900 \mathrm{~mm}^{2}$ [e]	[204][205]
Versal VC1902	37,000,000,000	2H 2019	Xilinx	TSMC	7 nm		[207][208]
Stratix 10 GX 10M	43,300,000,000	Q4 2019	Intel	Intel	14 nm	$1400 \mathrm{~mm}^{2}$ [e]	[210][211]
Versal VP1802	92,000,000,000	2021 ? ${ }^{[f]}$	Xilinx	TSMC	$7 \mathrm{~nm}$?	[212][213]

Special Purpose Systems

Device type $\stackrel{*}{*}$	Device name	Transistor count	Date of introduction	Designer(s) -	Manufacturer(s) $\stackrel{\rightharpoonup}{*}$	MOS process	Area *	Ref
Deep learning engine / IPU ${ }^{[g] / \text { S }}$	Colossus GC2	23,600,000,000	2018	Graphcore	TSMC	16 nm	$\sim 800 \mathrm{~mm}^{2}$	[295][296][297] [better source needed]
Deep learning engine / IPU	Wafer Scale Engine	1,200,000,000,000	2019	Cerebras	TSMC	16 nm	$46,225 \mathrm{~mm}^{2}$	[5][6][7][8]
Deep learning engine / IPU	Wafer Scale Engine 2	$2,600,000,000,000$	2020	Cerebras	TSMC	$7 \text { nm }$	$46,225 \mathrm{~mm}^{2}$	[9][298]

Selected Semiconductor Trends

- Microprocessors
- State of the art technology is now 5 nm with over 40 Billion transistors on a chip
- DRAMS
- State of the art is now 128G bits on a chip in a 10 nm process which requires somewhere around 140 Billion transistors
- FPGA
- FPGAs currently have over 90 Billion transistors with 7 nm technology and are growing larger
Device count on a chip has been increasing rapidly with time, device size has been decreasing rapidly with time and speed/performance has been rapidly increasing

Moore's Law

From Webopedia (Aug 2016)
The observation made in 1965 by Gordon Moore, co-founder of Intel, that the number of transistors per square inch on integrated circuits had doubled every year since the integrated circuit was invented. Moore predicted that this trend would continue for the foreseeable future. In subsequent years, the pace slowed down a bit, but data density has doubled approximately every 18 months, and this is the current definition of Moore's Law, which Moore himself has blessed. Most experts, including Moore himself, expect Moore's Law to hold for at least another two decades.

More on Moore's Law

Intelligent Machines
Moore's Law Is Dead. Now What?
Subscribe
the sciences mind health tech sustainability education video podcasts blogs store

SCIENTIFIC
AMERICAN
\qquad

Shrinking transistors have powered 50 years of advances in
computing-but now other ways must be found to make
computers more capable.
by Tom Simonite May 13,2016

ECH
End of Moore's Law: It's not just about physics

Moore's Law's End Reboots Industry | EE Times
www.eetimes.com/document.asp?doc_id=1331941 v
Jun 26, 2017 - The expected death of Moore's Law will transform the ... four years, so were reaching the
end of semiconductor technology as we know it," said ...

SPECTRUM Follow on: f in + ㄴ Engineering Topics	Speecial Repots		$\underset{\text { Past. Eficicent.Accurate }}{ }$		Is your design truly Optimized?	
		Blogs.	Mutreadia	The M	egazine	Proces
News 1 Semiconututes 10						
Transistors Could Stop Shrinking in 2021						

Moore's Law Running Out of Room, Tech Looks for a Successor - The ...
https://www.nytimes.com/.../moores-law-running-out-of-room-tech-looks-for-a-successo... May 4, 2016 - "The end of Moore's Law is what led to this," said Thomas M. Conte, a Georgia Institute of

A key industry report forecasts an end to traditional scaling of transistors

Moore's Law

(from Wikipedia)

Moore's law is the empirical observation that the complexity of integrated circuits, with respect to minimum component cost, doubles every 24 months[1]. It is attributed to Gordon E. Moore[2], a co-founder of Intel.

- Observation, not a physical law
- Often misinterpreted or generalized
- Many say it has been dead for several years
- Many say it will continue for a long while
- Not intended to be a long-term prophecy about trends in the semiconductor field
- Something a reporter can always comment about when they have nothing to say!

Device scaling, device count, circuit complexity, device cost, ... in leadingedge processes will continue to dramatically improve (probably nearly geometrically with a time constant of around 2 years) for the foreseeable future !!

Field Effect Transistors

Dielectric not shown

Feature Size

The feature size of a process generally corresponds to the minimum lateral dimensions of the transistors that can be fabricated in the process
(Top Surface View)

- Bounding region often a factor of 10 or more larger than area of transistor itself
- This along with interconnect requirements and sizing requirements throughout the circuit create an area overhead factor of $10 x$ to $100 x$

Challenges

- Managing increasing device count
- Short lead time from conception to marketplace
- Process technology advances
- Device performance degradation
- Increasing variability
- Increasing pressure for cost reduction
- Power dissipation

Future Trends and Opportunities

- Is there an end in sight?

No! But the direction the industry will follow is not yet known but the role semiconductor technology plays on society will increase dramatically!

- Will engineers trained in this field become obsolete at mid-career?

No! Engineers trained in this field will naturally evolve to support the microelectronics technology of the future. Integrated Circuit designers are now being trained to efficiently manage enormous levels of complexity and any evolutionary technology will result in even larger and more complexity systems with similar and expanded skills being required by the engineering community with the major changes occurring only in the details.

Future Trends and Opportunities

- Will engineers trained in this field be doing things the same way as they are now at midcareer?
No! There have been substantive changes in approaches every few years since 1965 and those changes will continue. Continuing education to track evolutionary and revolutionary changes in the field will be essential to remain productive in the field.
- What changes can we expect to see beyond the continued geometric growth in complexity (capability) ?
That will be determined by the creativity and marketing skills of those who become immersed in the technology. New "Gordon Moores", "Bill Gates" and "Jim Dells" will evolve.

Creation of Integrated Circuits

Most integrated circuits are comprised of transistors along with a small number of passive components and maybe a few diodes

This course will focus on understanding how transistors operate and on how they can be interconnected and possibly combined with a small number of passive components to form useful integrated circuits

Selected Semiconductror Company Profiles

(with lowa ties)
Texas Instruments:

- World's largest producer of analog semiconductors at \$15.4B, over 100% larger than closest competitor
- Ranks $1^{\text {st }}$ in DSP
- Ranks $9^{\text {th }}$ in World in semiconductor sales

Number of employees: 31,000
2022 sales: $\$ 20 B$
2022 income: \$8.7B (after taxes)

Average annual sales/employee: $\$ 645 \mathrm{~K}$
Average annual earnings/employee: $\$ 280 \mathrm{~K}$

$\$ 15.36$	$\$ 3.26$	$\$ 1.41$
Analog	Embedded	Other

(in billions of dollars)
Capital expenditures: $\$ 2.8$ billion
R\&D: $\$ 1.7$ billion
us
~ 14,000 in the Americas
$\sim 17,000$ in Asia-Pacific
~ 2,000 in Europe

Jerry Junkins
Past CEO of TI ISU EE Class of '59
(data from WWW)

Selected Semiconductror Company Profiles

(with lowa ties)
Intel:

World's largest producer of semiconductors
Cofounders: Robert Noyce and Gordon Moore
Number of employees (2022) : 132,000
2022 sales: \$63B down 20\%
2022 income: \$8B down 60\%
Average annual sales/employee: \$480K
Average annual earnings/employee: \$60K

Robert Noyce
BA Grinnell 1949

Noyce is also the co-inventor of the integrated circuit !

Selected Semiconductror Company Profiles

(with Iowa ties)
Marvell:
Cofounders: Sehat Sutardja (CEO), Welli Dai and Pantas Sutardja

Number of employees: 7400
(Jan 2023)

2022 sales: \$5.9B

2022 income: \$3.0B

Average annual sales/employee: \$790K

Average annual earnings/employee: \$405K

Sehat Sutardja BSEE ISU (approx 1985)

Fabless Semiconductor Company

Selected Semiconductror Company Profiles

(with lowa ties)
Maxim: Founded in April 1983, profitable every year since 1987
Tunc Doluca joined Maxim in October 1984, appointed President and CEO in 2007

Number of employees: 7100

2021 sales: \$2.6B

2021 income: \$827M

Average annual sales/employee: \$370K
Average annual earnings/employee: \$116K

Tunc Doluca
BSEE IASTATE (1979)
(now a part of Analog Devices)

Considerable Cash Flow Inherent in the Semiconductor Industry

Essentially All Activities Driven by Economic Considerations

- Many Designs Cost Tens of Millions of Dollars
- Mask Set and Production of New Circuit Approaching $\$ 2$ Million
- New Foundries Costs Approaching $\$ 10$ Billion (few players in World can compete)
- Many Companies Now Contract Fabrication (Fabless Semiconductor Companies)
- Time to Market is Usually Critical
- Single Design Error Often Causes Months of Delay and Requires New Mask Set
- Potential Rewards in Semiconductor Industry are Very High

Understanding of the Big Picture is Critical

Solving Design Problems can be Challenging

Be sure to solve the right problem !

Wire Sizes for Electrical Interconnects

50 A Range Cord
6 ga Wiring 0.162 in diameter

25um Gold Bonding Wire

Stay Safe and Stay Healthy !

